Are Better Feature Selection Methods Actually Better? - Discussion, Reasoning and Examples
نویسندگان
چکیده
One of the hot topics discussed recently in relation to pattern recognition techniques is the question of actual performance of modern feature selection methods. Feature selection has been a highly active area of research in recent years due to its potential to improve both the performance and economy of automatic decision systems in various applicational fields, with medical diagnosis being among the most prominent. Feature selection may also improve the performance of classifiers learned from limited data, or contribute to model interpretability. The number of available methods and methodologies has grown rapidly while promising important improvements. Yet recently many authors put this development in question, claiming that simpler older tools are actually better than complex modern ones – which, despite promises, are claimed to actually fail in real-world applications. We investigate this question, show several illustrative examples and draw several conclusions and recommendations regarding feature selection methods’ expectable performance.
منابع مشابه
Feature Selection in Structural Health Monitoring Big Data Using a Meta-Heuristic Optimization Algorithm
This paper focuses on the processing of structural health monitoring (SHM) big data. Extracted features of a structure are reduced using an optimization algorithm to find a minimal subset of salient features by removing noisy, irrelevant and redundant data. The PSO-Harmony algorithm is introduced for feature selection to enhance the capability of the proposed method for processing the measure...
متن کاملOnline Streaming Feature Selection Using Geometric Series of the Adjacency Matrix of Features
Feature Selection (FS) is an important pre-processing step in machine learning and data mining. All the traditional feature selection methods assume that the entire feature space is available from the beginning. However, online streaming features (OSF) are an integral part of many real-world applications. In OSF, the number of training examples is fixed while the number of features grows with t...
متن کاملImprovement of effort estimation accuracy in software projects using a feature selection approach
In recent years, utilization of feature selection techniques has become an essential requirement for processing and model construction in different scientific areas. In the field of software project effort estimation, the need to apply dimensionality reduction and feature selection methods has become an inevitable demand. The high volumes of data, costs, and time necessary for gathering data , ...
متن کاملOptimal Feature Extraction for Discriminating Raman Spectra of Different Skin Samples using Statistical Methods and Genetic Algorithm
Introduction: Raman spectroscopy, that is a spectroscopic technique based on inelastic scattering of monochromatic light, can provide valuable information about molecular vibrations, so using this technique we can study molecular changes in a sample. Material and Methods: In this research, 153 Raman spectra obtained from normal and dried skin samples. Baseline and electrical noise were eliminat...
متن کاملSequential and Mixed Genetic Algorithm and Learning Automata (SGALA, MGALA) for Feature Selection in QSAR
Feature selection is of great importance in Quantitative Structure-Activity Relationship (QSAR) analysis. This problem has been solved using some meta-heuristic algorithms such as: GA, PSO, ACO, SA and so on. In this work two novel hybrid meta-heuristic algorithms i.e. Sequential GA and LA (SGALA) and Mixed GA and LA (MGALA), which are based on Genetic algorithm and learning automata for QSAR f...
متن کامل